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A B S T R A C T

Agriculture is a significant contributor to greenhouse gas (GHG) emissions and organic farming practices can
potentially offset some of these emissions. However, previous research on the environmental impact of organic
agriculture has provided mixed or contradictory results. This study aims to analyze the role that organic
farming can play in mitigating agricultural emissions across the United States. Using panel U.S. state-level data,
we find evidence that farming activities increase GHG emissions. However, we also find that dedicating a larger
share of farmland to organic and pasture farming reduces GHG emissions. A spatial analysis of agricultural
emissions that accounts for the role of organic farming provides three key insights. First, the spatial distribution
of agricultural GHG emissions in the United States is uneven. Second, agriculture is a significant contributor
to GDP within high-emissions states where organic agriculture represents only a small proportion of total
farmland. Third, agriculture has a substantially lower contribution to GDP within low-emissions states where
organic agriculture represents a large proportion of total farmland. These findings suggest that reducing GHG
emissions effectively may necessitate creating and implementing policies and initiatives tailored to specific
regions rather than relying on general recommendations. Thus, low-emissions states should be explored as
examples of sustainable agricultural practices that could set the stage for scaling up organic farming practices
across the country.
1. Introduction

Greenhouse gas (GHG) emissions have been steadily increasing
worldwide due to relentless consumption of fossil fuels, deforestation,
and other human activities. The three largest sectors responsible for
GHG emissions are energy use in industry, responsible for 24.2% of
emissions, followed by agriculture, forestry, and land use at 18.4%,
and energy use in buildings at 17.5% (Ritchie et al., 2020). Sig-
nificant strides have been made toward transitioning to renewable
energy sources with 95% of the growth in global power capacity
projected to come from renewables by 2026 (International Energy
Agency, 2021). Commercial buildings worldwide have also contributed
to decarbonization efforts, with total avoided emissions of 4,375 met-
ric tons of CO2𝑒 across 16 major countries between 2010 and 2019
and representing 10% of total cumulative emissions (Xiang et al.,
2022). With the United States and China being the top carbon-emitting
countries, deeper and more drastic decarbonization efforts can allow
these countries to achieve carbon neutrality in commercial buildings
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by 2060 (Zhang et al., 2022). In contrast, agricultural decarbonization
has lagged with emissions projected to decrease in the European Union,
for instance, by only about 1.5% between 2020 and 2040 (European
Environment Agency, 2022).

While significant progress has been made in decarbonizing energy
use in industry and commercial buildings and possibly other sectors,
there is still much work to be done to tackle emissions from agriculture.
To address this concern, the Conference of the Parties (COP23) adopted
in its 23rd session held in 2017 decision 4/CP.23 on the ‘‘Koronivia
joint work on agriculture’’ calling for the Subsidiary Body for Sci-
entific and Technological Advice (SBSTA) and the Subsidiary Body
for Implementation (SBI) to work together to address issues relating
to agriculture and food security (UNFCCC, 2018). In the recent 27th
session of the Conference of the Parties (COP27), which was held in
Egypt in November 2022, participating countries acknowledged the
necessity for a shift to food systems that are not only sustainable
but also resilient to climate change. Special emphasis was placed
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on the use of organic fertilizers, improved manure management, and
more sustainable livestock systems (UNFCCC, 2022). With agriculture,
forestry, and land use contributing significantly to global emissions, the
shift is expected to not only reduce global emissions but also to help
alleviate world hunger and poverty. Thus, understanding the drivers
of agricultural emissions can help identify effective means to reduce
them. In particular, organic agricultural practices can offset some of
these emissions or those from other sectors.

Organic agriculture has numerous environmental benefits. For in-
stance, conventional farming techniques generally depend on chemical
fertilizers, which can damage soil structure and deplete it of vital
nutrients. This can lead to soil erosion and loss of fertility, thereby
reducing crop yields and productivity. Organic farming has the opposite
effect due to its reliance on natural fertilizers, such as compost and
manure, which add nutrients to the soil and improve its structure.
Organic farming also minimizes the use of synthetic chemicals, such as
pesticides and herbicides, which can be harmful to the environment,
human health, and wildlife and can contaminate the food, soil and
water sources. Organic farming generally uses natural methods to
control pests and weeds, such as crop rotation, green manure, compost,
and the introduction of beneficial insects and natural predators (Niggli
et al., 2009). These tools help soils get healthier and more resilient to
extreme weather events, and promote biodiversity while also reduc-
ing the potential health risks associated with synthetic pesticides and
herbicides. Organic agriculture can also sequester up to one third of
the current emissions from the use of ecologically-sound processes to
manage the land, soil, and crops (Jordan et al., 2009). More optimistic
estimates put the sequestration potential at 40%–72% from the elimina-
tion of mineral fertilizers, reduced energy use, and sequestration from
croplands and grasslands (Scialabba and Müller-Lindenlauf, 2010).

While organic agriculture appears to be a promising tool to be
used in tackling climate change, supporting evidence has been based
on a large number of lifecycle analyses (LCAs) contrasting organic
and conventional agriculture. These studies have yielded estimates
that varied greatly across goods, categories of goods, regions, and
sometimes even across studies covering the same goods or categories.
In general, compared to conventional agriculture, organic agriculture
has been estimated to use less energy per unit of land (Gomiero et al.,
2008; Tuomisto et al., 2012; Clark and Tilman, 2017), to emit less GHG
emissions per unit of land (Mondelaers et al., 2009; Tuomisto et al.,
2012), to leach less nitrate (Mondelaers et al., 2009; Tuomisto et al.,
2012), to emit less ammonia per unit of land (Tuomisto et al., 2012),
to contain more soil organic matter (Mondelaers et al., 2009; Tuomisto
et al., 2012), and to have more enhanced biodiversity (Bengtsson et al.,
2005; Tuck et al., 2014). On the other hand, conventional agriculture
has been estimated to use more energy per unit of output (Gomiero
et al., 2008), to emit less N2O per unit of output (Tuomisto et al.,
2012), to leach less nitrate when measured globally (Mondelaers et al.,
2009), to emit less ammonia per unit of output (Tuomisto et al., 2012),
and to have lower eutrophication and acidification potential per unit of
output (Clark and Tilman, 2017).

The mixed results and measurement issues in LCAs suggest that fur-
ther research using alternative methods, such as regression analysis, is
needed. In fact, the subjectivity in data selection and restrictive assump-
tions in LCAs raise questions about the certainty of these findings and
limit their generalizability. In addition, studies using regression analy-
sis have been limited to two studies that add more to the ambiguity
delivered by LCAs, with one presenting evidence of a positive asso-
ciation between organic farming and GHG emissions (McGee, 2015)
and another finding a negative relationship (Squalli and Adamkiewicz,
2018).

The ambiguity resulting from previous research creates a significant
knowledge gap regarding the environmental impact of organic agri-
culture. This paper aims to fill this gap by estimating and mapping
GHG emissions from agriculture across the United States, taking into
2

account the role of organic agriculture. This is a significant contribution
as it is the first attempt to account for the role of organic agriculture
in reducing GHG emissions in a spatial depiction of emissions. The
research aims to identify patterns across states according to identifiable
characteristics, allowing policymakers to better target their efforts to
reduce emissions and assess the impact of organic agriculture on GHG
emissions. To this end, this paper is organized as follows: Section 2 sum-
marizes previous relevant research. Section 3 describes the data and
methodology. Section 4 summarizes the estimation results. Section 5
discusses the spatial distribution of emissions. Section 6 discusses the
findings and concludes.

2. Previous research

Although the general consensus is that organic farming is more
environmentally sustainable than its conventional counterpart, previ-
ous research has not provided categorical supporting evidence. Various
LCAs have compared conventional and organic farming across a num-
ber of categories, including but not limited to land use, energy use,
GHG emissions, nutrient leaching, soil quality, and biodiversity. The
following represents a summary of some relevant contributions.

2.1. Energy use

A review of several studies comparing conventional to organic
agriculture found that the latter used 10%–70% less energy per unit
of land for all analyzed crops, 8%–54% less energy per unit of output
for most crops, and 23% more energy per unit of output for apples
and up to 29% more energy per unit of output for potatoes (Gomiero
et al., 2008). In another meta-analysis, organic agriculture was found
to use on average 21% less energy per unit of output across a range
of products except for pork and potatoes, which showed more energy
use (Tuomisto et al., 2012). The higher energy use was attributed to
significant crop and feed production for pork (Basset-Mens and Van der
Werf, 2005) and to the deep ploughing that potatoes typically require
in cultivation and during harvest (Glendining et al., 2009).

2.2. GHG emissions

The meta-analysis by Tuomisto et al. (2012) found GHG emissions
to vary across different products. For instance, organic olive, beef,
and other crops had lower GHG emissions, whereas organic milk,
cereals, and pork had greater emissions. Lower emissions for olives
were attributed to a lower consumption of fossil fuels, whereas those for
beef were attributed to industrial inputs (Casey and Holden, 2006). On
the other hand, the greater emissions from organic milk and pork were
caused by high methane and nitrous oxide emissions from straw lit-
ter (Thomassen et al., 2008). These mixed findings led to the conclusion
that GHG emissions per unit of output did not vary across conventional
and organic agriculture. In contrast, another meta-analysis conducted
by Mondelaers et al. (2009) found GHG emissions per unit of land to
be 39% lower in organic farms and 10% lower per unit of output.

Tuomisto et al. (2012) found that nitrous oxide emissions were
about 31% lower per unit of land but 8.5% higher per unit of output
in organic farms. Mondelaers et al. (2009) estimated the lower nitrous
oxide emissions in organic farms to be only 14% per unit of land and
provided no estimates for the changes in emissions per unit of output.

2.3. Nutrient leaching

The leaching of nutrients in organic agriculture, which can represent
a major source of acidification, eutrophication, and groundwater con-
tamination, varies depending on whether it is measured per unit of land
or per unit of output. For instance, Tuomisto et al. (2012) estimated
nitrate leaching to be 30.6% lower per unit of land, consistent with the
29.7% rate estimated by Mondelaers et al. (2009). However, on a per

unit of output basis, Tuomisto et al. (2012) estimated nitrate leaching
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Fig. 1. Scatter plots of organic cropland, farming share, and GHG emissions.
n organic agriculture to be 49.1% higher, while (Mondelaers et al.,
009) estimated it to be 5% lower. Tuomisto et al. (2012) attributed
he lower nitrogen level to fewer nitrogen input applications and the
igher nitrogen level to a mismatch between nitrogen availability and
crop’s nitrogen intake. The study also suggested that lower nitrogen

eaching per unit of product arose from the use of cover crops in organic
arming.

Ammonia emissions were also estimated to be 18% lower per unit
f land but 11% higher per unit of output (Tuomisto et al., 2012).
urthermore, in a more recent meta-analysis, organic agriculture was
stimated to raise the eutrophication and acidification potential per
nit of output by 36% and 13%, respectively (Clark and Tilman, 2017).

.4. Soil quality and biodiversity

According to Tuomisto et al. (2012) and Mondelaers et al. (2009),
oil organic matter levels were found to be over 6% higher in or-
anic farms due to increased inputs of organic matter such as manure
nd compost. In a meta-analysis focusing on biodiversity and abun-
ance, Bengtsson et al. (2005) showed that organic agriculture could
ncrease species richness by an average of 30%. This estimate was
urther confirmed in an updated meta-analysis (Tuck et al., 2014).
rganic agriculture was also estimated to increase organism abundance
y an average of 50% (Bengtsson et al., 2005). However, Bengtsson
t al. (2005) found significant variability across studies with 16% of
hem showing a negative effect of organic farming on species richness.
urthermore, there were no clear benefits observed in studies focused
n non-predatory insects and pests as well as in farms with matched
andscapes.

These studies represent a small example of how useful LCAs are in
valuating the environmental impact of different agricultural practices.
owever, there are also less common methods, such as regression
nalysis, which can provide insights into the impact of organic farming
n GHG emissions. To date, only two relatively recent studies used
3

egression analysis to examine this issue. The first study by McGee
(2015) found that organic farming increased GHG emissions. They
attributed this effect to the ‘‘displacement paradox’’, which suggests
that the expansion of the organic farming sector does not always
replace conventional farming, but rather represents new demand. In
contrast, the second study by Squalli and Adamkiewicz (2018), found
that organic farming could reduce GHG emissions and attributed the
effect to organic farming practices, such as regenerative farming and
distribution into local markets.

It is worth mentioning that previous evidence measuring the impact
of organic agriculture per unit of output seemed to be based on the as-
sumption that yield gaps between organic and conventional agriculture
were large and constant, typically around 20%–25% (De Ponti et al.,
2012; Seufert et al., 2012), when in fact they have been estimated
at around 19.2% (Ponisio et al., 2015) and could even be as low
as 8%–9% (Stanhill, 1990; Badgley et al., 2007). Indeed, yield gaps
between organic and conventional agriculture are likely decreasing as
diversification methods such as multicropping and crop rotations are
gradually being incorporated (Ponisio et al., 2015).

In sum, previous research raises three key points. First, the mixed
results in LCAs and discrepancies between the findings of McGee (2015)
and Squalli and Adamkiewicz (2018) highlight the lack of categorical
supporting evidence for the general expectation that organic farming
is more environmentally sustainable than conventional farming. Sec-
ond, the mixed results represent a knowledge gap that can be filled
with further research. Third, the implication is that the environmental
sustainability of farming practices is a complex issue that requires
a fresh look. This study addresses these points by making use of
regression analysis to develop an understanding of the role that organic
agriculture can play in mitigating GHG emissions.

3. Methods

3.1. Data

We make use of U.S. state-level data over the 1997–2010 period.
However, due to missing data from the USDA, we exclude the years
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Table 1
Summary statistics.

Variables Max Min SD Mean Obs.

ln GHG Overall 6.7 2.3 0.79 4.63 N = 550
Between 6.68 2.99 0.79 n = 50
Within 5.12 2.88 0.14 T = 11

ln population Overall 17.44 13.1 1.01 15.09 N = 550
Between 17.38 13.15 1.02 n = 50
Within 15.26 14.83 0.05 T = 11

ln income Overall 11.17 10.25 0.18 10.68 N = 550
Between 11.05 10.32 0.17 n = 50
Within 10.98 10.41 0.06 T = 11

ln VMT Overall 12.7 8.39 0.98 10.52 N = 550
Between 12.67 8.49 0.99 n = 50
Within 10.74 10.21 0.06 T = 11

Oil & natural Overall 38.05 0 3.91 1.5 N = 511
gas Between 19.54 0 3.66 n = 50
(% of GDP) Within 20.01 −3.79 1.11 T = 10.2

Utilities Overall 4.37 0.61 0.63 2.12 N = 550
(% of GDP) Between 3.51 0.69 0.57 n = 50

Within 3.08 1.22 0.28 T = 11

Manufacturing Overall 29.81 1.75 5.48 12.46 N = 550
(% of GDP) Between 27.24 1.97 5.34 n = 50

Within 26.13 4.43 1.42 T = 11

Transportation Overall 11.79 1.34 1.51 3.3 N = 550
(% of GDP) Between 9.97 1.43 1.5 n = 50

Within 5.13 1.79 0.28 T = 11

ln farmland Overall 18.69 11 1.57 15.95 N = 550
Between 18.69 11.11 1.59 n = 50
Within 16.1 15.84 0.03 T = 11

ln organic Overall 13.12 0.69 2.26 9.01 N = 535
cropland Between 12.27 4.73 2.18 n = 50

Within 13.24 3.52 0.77 T = 10.7

ln organic Overall 14.19 1.61 2.53 7.88 N = 456
pasture Between 13.03 3.43 2.37 n = 50

Within 11.93 2.39 1.16 T = 9.12

ln organic Overall 98.81 0.95 14.84 29.84 N = 535
crop × Between 86.39 6.75 14.56 n = 50
Transportation Within 46.7 −5.3 3.87 T = 10.7
1998, 1999, and 2009. Although the USDA reports its last year of data
for organic acreage as 2011, there is no matching data for total farming
acreage, which is available for 2012 and 2017. To our knowledge,
there is no similar data at a lower level of aggregation. Emissions data
are from the World Resources Institute’s (WRI) CAIT-US. We limit our
analysis to total greenhouse gas (GHG) emissions, which are measured
in metric tons of CO2 equivalent (MTCE). In particular, GHG data
account for land-use change and forestry (LUCF), which account for
carbon emissions and carbon sinks arising from deforestation, reforesta-
tion, and land use changes. According to the Environmental Protection
Agency, GHG emissions are comprised of 79% CO2, 11% CH4, 7%
2O, and 3% fluorinated gases (i.e. hydrofluorocarbons (HFCs), perflu-
rocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride
NF3)).1

Other data include real per capita GDP (in chained 2009 dollars),
utput share for utilities, manufacturing, oil and natural gas, and trans-
ortation (% of state GDP), which are from the Bureau of Economic
nalysis. Data for vehicle miles traveled (VMT) are from the U.S. De-
artment of Transportation’s Federal Highway Administration, whereas
hose for organic cropland acreage, organic pasture acreage, and total
armland acreage are from the USDA’s Economic Research Service.
inally, data for population, which represent mid-year estimates are
rom the U.S. Census Bureau.

1 Source: Environmental Protection Agency, https://www.epa.gov/
hgemissions/overview-greenhouse-gases
4

Table 1 presents summary statistics of all variables. Upon close
inspection, we can see that the variation in most of these variables
differs significantly across states compared to within a state over time.
This suggests that using panel analysis is appropriate since the listed
variables are influenced by variation across both states and time.

Fig. 1 provides a preliminary look at the relationship between
organic cropland (% of farmland) and GHG emissions per capita and
the relationship between the share of agriculture (% of GDP) and GHG
per capita, in panels (a) and (b), respectively. These figures are derived
after averaging data for each state across time and scaling GHG data
with the population variable. Panel (a) suggests a possible negative
correlation between the share of organic cropland and per capita GHG
emissions. However, due to the limited prevalence of organic farming
across the United States, most data points are clustered near the origin,
making it difficult to establish a clear pattern. On the other hand, panel
(b) shows a positive correlation between the share of agriculture and
GHG emissions per capita, which is not surprising given that agriculture
is a major contributor to GHG emissions.

3.2. Empirical specifications

We assess the relationship between organic farming acreage and
GHG emissions using a model based on the Stochastic Impacts by
Regression on Population, Affluence, and Technology (STIRPAT) ap-
proach (e.g. Dietz and Rosa, 1994; York et al., 2003; Cole and Neu-
mayer, 2004; Squalli, 2009, 2010, 2014). The STIRPAT model is based
on the IPAT mathematical identity, which hypothesizes that environ-
mental impact (I) is influenced by population (P), affluence (A), and

https://www.epa.gov/ghgemissions/overview-greenhouse-gases
https://www.epa.gov/ghgemissions/overview-greenhouse-gases
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technology (T), such that I = P × A × T (Ehrlich and Holdren, 1971).
The IPAT model can be expressed for U.S. state-level panel regression
analyses as Eq. (1):

I𝑖𝑡 = 𝛼𝑃 𝛽
𝑖𝑡𝐴

𝛾
𝑖𝑡𝑇

𝛿
𝑖𝑡 𝜖𝑖𝑡 (1)

where 𝑖 and 𝑡 represent the state and period, respectively, whereas the
constant terms are comprised of 𝛼, 𝛽, 𝛾, and 𝛿 followed by the error
erm 𝜖. After log-linearization, we get Equation (2):

ln I𝑖𝑡 = ln 𝛼 + 𝛽 lnP𝑖𝑡 + 𝛾 lnA𝑖𝑡 + 𝛿 lnT𝑖𝑡 + ln 𝜖𝑖𝑡 (2)

here 𝛽, 𝛾, and 𝛿 can be interpreted as ecological elasticities, which
easure the percent change in environmental impact (e.g. GHG emis-

ions) in response to a one percent change in corresponding explanatory
ariables. It is worth noting that log transformation has several advan-
ages. First, estimates with variables that have been log-transformed
re less susceptible to outliers and heteroskedastic residuals. Second,
he coefficient estimates, as ecological elasticities, assess how respon-
ive a dependent variable is to independent variable changes when
djusted for other variables. In order to simplify economic interpreta-
ions and address potential concerns about inconsistent measurement
nits, changes are expressed in percentage terms rather than levels.
hird, since log transformation scales the data to a standard unit
f measurement, the interpretation of coefficient estimates is more
ccurate.

The base model for our analysis can be expressed by Eq. (3):

HG𝑖𝑡 = 𝛼 + 𝛽 POP𝑖𝑡 + 𝛾 INC𝑖𝑡 + 𝛿 TECH𝑖𝑡 + 𝜃𝑖 + 𝜃𝑡 + 𝜖𝑖𝑡 (3)

here log GHG emissions for U.S. state 𝑖 in period 𝑡 are estimated
ith respect to log population (POP), a vector of income variables

INC), and a vector of technology variables (TECH). The model also
as a state-specific component, 𝜃𝑖, a year-specific component, 𝜃𝑡, and
n idiosyncratic shock, 𝜖𝑖𝑡.

The population variable is a scale variable and controls for the
ell-known effect of population growth on emissions. The INC vector
f variables is comprised of log real per capita GDP and the latter’s
quared term. Real per capita GDP is a proxy for affluence and is also
ntroduced in a quadratic form to account for potential non-linearity
etween affluence and emissions, consistent with the Environmental
uznets Curve hypothesis (Grossman and Krueger, 1995). The vector
f technology variables (TECH) includes log vehicle miles traveled
VMT), output share of oil & natural gas (OIL), utilities (UTIL), man-
facturing (MANUF), and transportation (TRANS) sectors (% of state
DP). The VMT variable controls for the potential effect of driving
ehicles on GHG emissions. The OIL, UTIL, MANUF, and TRANS vari-
bles control for emissions from relatively large oil and natural gas
roduction, manufacturing, utilities, manufacturing, and transportation
ectors, respectively.

The augmented model, which adds variables related to farming
ctivities, can be expressed by Eq. (4):

HG𝑖𝑡 = 𝛼 + 𝛽 POP𝑖𝑡 + 𝛾 INC𝑖𝑡 + 𝛿 TECH𝑖𝑡 + 𝜆 FARM𝑖𝑡

+ 𝜃𝑖 + 𝜃𝑡 + 𝜖𝑖𝑡 (4)

here FARM represents a vector of variables comprised of log total
armland acreage (FARMLAND), log organic cropland acreage
ORGCROP), and log organic pasture acreage (ORGPAST). Further-
ore, and consistent with Squalli and Adamkiewicz (2018), we include

n interaction term between ln ORGCROP and TRANS.
Given our aim to assess the partial impact of organic agriculture on

HG emissions, we consider FARMLAND, ORGCROP, and ORGPAST as
ur key variables of interest. We expect their joint use to control for
missions arising from the agricultural sector and for the relative size
f the organic farming sector. On the other hand, the interaction term
etween TRANS and ln ORGCROP helps interpret the effect of organic
arming acreage for given levels of transportation output share. Given
he importance of transportation to farming, this would help examine
hether the potential environmental benefits of organic food produc-

ion, if any, are substantial enough to outweigh the environmental
5

arm of transportation output embodied in organic farming.
.3. Estimation method

We estimate Equation (4) using random effects and fixed effects
stimators and cluster-robust standard errors that control for arbi-
rary heteroskedasticity and arbitrary intragroup correlation. We use

Hausman test to choose an appropriate estimator and use a Wald
est to determine the inclusion of year dummies. Once an appro-
riate estimator is selected, we derive estimates for the error term.
he error component in random effects estimations is comprised of
he state-specific component and the idiosyncratic shock, whereas the
tate-specific component is captured by the intercept in fixed effects
stimations.

. Estimation results

Table 2 summarizes the estimation results. Based on the Hausman
est, we choose for our estimations random effects with cluster ro-
ust standard errors. We also focus on the estimations that exclude
ear dummies due to their higher explanatory power.2 We estimate
our specifications with the gradual introduction of the key variables,
amely those representing farmland, organic cropland, and organic
asture. The results reported in column (1) are for the base STIRPAT
pecification with variables controlling for population, affluence, and
echnology. Column (2) shows the estimation results of the base STIR-
AT model that is augmented with the farmland variable. Column (3)
ncludes the estimation results of the specification in column (2) that
s augmented with the organic cropland and organic pasture variables.
inally, the estimation results in column (4) are for the specification in
olumn (3) that is augmented with the interaction variable of organic
ropland and transportation.

The estimation results in column (1) of the base model show a bell-
haped relationship between income and GHG emissions and all other
arameter estimates, except for population, are positive and statisti-
ally significant. The estimation results in column (2) show that with
he introduction of the FARMLAND variable, the explanatory power of
he model increases despite the smaller sample size of 656 observations
nstead of 700 observations in the base model. As expected and contrary
o the base model’s estimation results, the parameter estimate for popu-
ation is positive and statistically significant. The nonlinear relationship
etween income and GHG emissions is unaffected in the new model
nd the variables Oil & Natural Gas, Utilities, Manufacturing, and log
armland have positive and statistically significant coefficient estimates
at least 𝑝 < 0.01). The estimation results in column (3) are for
he augmented model that includes the organic cropland and organic
asture variables. The sample size is reduced to 421 observations and
he explanatory power increases slightly. Although there is no longer
ny evidence of a nonlinear relationship between income and GHG
missions, the remaining variables maintain their sign and statistical
ignificance. In addition, the parameter estimates for organic cropland
nd organic pasture are negative and statistically significant (𝑝 < 0.01).

The estimation results in column (4) show that although most
f the parameter estimates of the variables previously discussed and
xplanatory power of the model are unaffected by the new change,
here is no evidence of a statistically significant interaction effect
etween transportation and organic cropland acreage. Nevertheless,
iven that the size of the coefficient estimate for organic cropland
hanges slightly, we can infer that the interaction term does play a role
hat is not necessarily captured from this model and would be likely
aptured when environmental impact is measured with other green-
ouse gases (i.e. CH4 and N2O) as previously established by Squalli and
damkiewicz (2018).

Focusing on the estimation results in column (4), we find that the
arameter estimates for the variables of interest provide important

2 R2 values are higher for the estimations that exclude year dummies.
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Table 2
Estimation results (𝑛 = 50).

VARIABLES (1) (2) (3) (4)

ln population 0.289 0.478* 0.506** 0.541***
(0.189) (0.193) (0.160) (0.165)

ln income 34.323* 34.545* 22.032 22.139
(14.717) (15.154) (16.355) (15.883)

(ln income)2 −1.589* −1.591* −1.005 −1.012
(0.684) (0.704) (0.759) (0.737)

ln VMT 0.324 0.091 0.080 0.042
(0.180) (0.193) (0.166) (0.169)

Oil & Natural Gas 0.020* 0.018* 0.034*** 0.035***
(0.008) (0.008) (0.010) (0.010)

Utilities 0.097** 0.106** 0.081** 0.068*
(0.034) (0.034) (0.033) (0.034)

Manufacturing 0.021*** 0.020*** 0.020** 0.020**
(0.005) (0.006) (0.006) (0.006)

Transportation 0.049 0.034 0.038 −0.058
(0.027) (0.028) (0.035) (0.055)

ln farmland 0.110** 0.129** 0.131***
(0.038) (0.038) (0.036)

ln organic cropland −0.024* −0.059*
(0.011) (0.027)

ln organic pasture −0.009* −0.007*
(0.004) (0.003)

ln organic cropland × Transportation 0.010
(0.007)

Constant −189.083* −193.320* −126.810 −127.066
(79.892) (82.290) (88.286) (85.718)

Hausman 𝜒2 12.94
p value 0.37
𝑁 700 656 421 421
Overall R-squared 0.784 0.807 0.828 0.828

Notes: Cluster-robust standard errors in parentheses.
*𝑝 < 0.05.
**𝑝 < 0.01.
***𝑝 < 0.001.
insight on the environmental effect of agriculture. U.S. states that
have more farmland have more GHG emissions (𝑝 < 0.001), whereas
those that have more cropland dedicated to organic agriculture have
lower GHG emissions (𝑝 < 0.01). In addition, those states that have
organically-managed pasture have lower GHG emissions (𝑝 < 0.01). The
reported parameter estimates represent ecological elasticities, which
measure the percentage change in GHG emissions resulting from a
one percent increase in farmland use. Based on these estimates, a one
percent increase in total farmland acreage is estimated to increase GHG
emissions by 0.131 percent, whereas a one percent increase in organic
cropland acreage is estimated to decrease GHG emissions by about
0.06 percent, and a one percent increase in organic pasture acreage
is estimated to decrease emissions by 0.007 percent.

4.1. Sensitivity analysis

The estimation results discussed above must be carefully scruti-
nized to ensure that they are not influenced by extreme observations.
Outliers can significantly impact coefficient estimates and standard
errors, thereby resulting in potentially inaccurate and unreliable in-
terpretations of coefficient estimates. The bootstrap method can be
used to re-estimate our model and produce more reliable parameter
estimates that downweight the influence of extreme observations, if
any (Wooldridge, 2010). For robustness, we combine cluster-robust
estimation with resampling for our bootstrap.

Given the relatively small sample used in our analysis and the
importance of obtaining reasonably precise estimates, we re-estimate
6

Table 3
Bootstrapped standard errors of the key variables.

Replications

500 1000 2000

ln farmland 0.0152 0.0148 0.0148
(0.000) (0.000) (0.000)

ln organic cropland 0.0207 0.0210 0.0208
(0.004) (0.005) (0.005)

ln organic pasture 0.0040 0.0039 0.0039
(0.063) (0.056) (0.055)

The cluster-robust bootstrapped standard errors are reported with
their corresponding p values between parentheses.

Equation (4) using a random effects approach with cluster-robust stan-
dard errors and the following series of bootstrap replications: 500,
1000, and 2000. It is worth noting that although 500 replications would
suffice, we choose to add an additional dimension of sensitivity analysis
by evaluating the stability of our estimates across different numbers of
replications.

Table 3 reports the cluster-robust bootstrapped standard errors of
our key variables along with their p-values. Although we observe a
decrease of the standard errors for both ln farmland and ln organic
cropland, the parameter estimates for these two variables remain statis-
tically significant. On the other hand, the standard error for ln organic
pasture increases sufficiently to eliminate statistical significance. How-
ever, upon close inspection, we can see that the standard error in the
original estimation is 0.0035, whereas the bootstrapped standard error
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Fig. 2. Spatial distribution of GHG emissions (Quantiles).
Table 4
Estimates of GHG emissions from agriculture.

State GHG State GHG

WY 0.226 NC 0.185
SD 0.217 CO 0.184
MS 0.215 UT 0.183
MT 0.212 ID 0.182
NM 0.211 OR 0.181
ND 0.211 IL 0.181
AL 0.211 MN 0.179
OK 0.208 VA 0.176
LA 0.208 WA 0.174
SC 0.205 WI 0.169
KS 0.204 OH 0.169
NE 0.204 FL 0.168
KY 0.204 MI 0.164
WV 0.203 MD 0.163
TN 0.200 NH 0.163
AR 0.197 PA 0.162
AZ 0.195 VT 0.160
GA 0.192 ME 0.159
DE 0.192 CT 0.154
MO 0.192 CA 0.153
IA 0.191 RI 0.152
NV 0.191 NY 0.149
IN 0.190 NJ 0.149
TX 0.186 MA 0.147

is 0.0039. Given the small reported parameter estimate for ln organic
pasture (0.007), the increase in the 𝑝-value from 0.034 to 0.055 is not
surprising. Thus, it can be argued that the bootstrapped standard error,
although slightly larger, still maintains marginal statistical significance
at the 0.05 level. Given the small difference between the original stan-
dard error and the bootstrapped standard error, it may be reasonable to
indicate a suggestive relationship between ln organic pasture and GHG
emissions.

In sum, the bootstrapped estimations suggest that the results re-
ported in Table 2 do not appear to be affected by influential obser-
vations and, as a result, provide a relatively reliable and accurate
assessment of our hypothesized relationships.

5. Spatial analysis

The parameter estimates reported in column (4) of Table 2 can be
used along with point estimates for relevant variables to produce GHG
7

emissions for individual states. The following equation is derived using
only statistically significant coefficient estimates for the key variables,
namely the variables related to farming and organic agriculture.

lnGHG𝑖𝑡 = 0.131 ln FARMLAND𝑖𝑡 − 0.059 lnORGCROP𝑖𝑡

− 0.007 lnORGPAST𝑖𝑡 (5)

Eq. (5) basically shows that the farmland variable contributes pos-
itively the most to GHG emissions, followed by the organic cropland
and organic pasture variables, respectively, which contribute negatively
to GHG emissions. Mean values for each of the relevant variables are
then substituted into these equations to derive point estimates of the
state-level environmental impact. These estimates are then scaled using
point estimates of the population variable that are weighted using
the parameter estimate reported in Table 2 (i.e. 0.541). This process
essentially yields state-level estimates of per capita GHG emissions
arising from agriculture.

Table 4 provides estimates of GHG emissions for individual states
in the contiguous United States. For instance, Wyoming has the largest
GHG emissions (0.226), which are 1.5 times greater than those in
Massachusetts (MA), where GHG emissions are the lowest (0.147).
By utilizing a user-written Stata spmap command, we can visually
represent the spatial distribution of these emissions. The resulting
map uses different colors to indicate four quantiles for environmental
emissions, with red representing the high-emissions class and dark blue
representing the low-emissions class.

Fig. 2 shows the spatial distribution of agricultural GHG emissions,
revealing one high-emissions cluster and a small high-emissions group.
The high-emissions cluster is located in the center of the country and is
comprised of seven states, namely Kansas (KS), Montana (MT), North
Dakota (ND), Nebraska (NE), Oklahoma (OK), South Dakota (SD), and
Wyoming (WY), and extending further south to New Mexico (NM). The
high-emissions group is located in the southeast and is comprised of
four states, namely Alabama (AL), Mississippi (MS), Louisiana (LA), and
South Carolina (SC).

The larger cluster is located in an area generally known as the
‘‘Great Plains’’, which is largely dependent on agricultural activities
such as livestock grazing and the production of alfalfa, barley, canola,
corn, cotton, sorghum, soybeans, and wheat (Wishart, 2004). Table 5
shows that for all the listed states, a large proportion of their GDP
comes from agriculture. Farming in SD is the largest, representing
5.94% of GDP followed by ND (5.59%) and NE (4.29%). Farming in
MT ranks sixth representing 2.37% of GDP followed by KS (2.22%).
The remaining states, OK, NM, and WY, rank 11th, 12th, and 15th with

farming representing 1.17%, 1.12%, and 1.11% of GDP, respectively. It
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Table 5
Mean farming (% GDP) and organic cropland (% farmland), 1997–2010.

State Organic Rank Farming Rank State Organic Rank Farming Rank

VT 3.130 1 0.946 17 FL 0.137 25 0.571 26
ME 1.496 2 0.528 28 SD 0.133 26 5.939 1
NY 0.933 3 0.142 43 NV 0.110 27 0.162 42
CA 0.914 4 0.870 20 WY 0.109 28 1.111 15
ID 0.710 5 3.520 4 VA 0.096 29 0.243 39
WI 0.652 6 1.111 14 IL 0.089 30 0.507 30
NH 0.432 7 0.136 44 AR 0.082 31 2.085 8
MI 0.427 8 0.438 32 KS 0.077 32 2.218 7
MN 0.396 9 1.311 10 MO 0.074 33 0.819 21
UT 0.368 10 0.420 34 TX 0.061 34 0.549 27
ND 0.332 11 5.585 2 AZ 0.057 35 0.517 29
MA 0.322 12 0.063 48 NM 0.044 36 1.124 12
WA 0.316 13 0.911 18 IN 0.039 37 0.755 23
NJ 0.306 14 0.103 46 NC 0.037 38 0.788 22
OR 0.305 15 1.119 13 OK 0.023 39 1.171 11
PA 0.271 16 0.362 37 DE 0.023 40 0.488 31
OH 0.244 17 0.418 35 WV 0.020 41 0.170 41
CO 0.223 18 0.669 24 KY 0.017 42 1.000 16
IA 0.216 19 3.442 5 GA 0.012 43 0.602 25
MT 0.213 20 2.367 6 TN 0.012 44 0.353 38
RI 0.203 21 0.065 47 LA 0.005 45 0.397 36
MD 0.196 22 0.210 40 MS 0.004 46 1.411 9
NE 0.159 23 4.287 3 SC 0.003 47 0.433 33
CT 0.143 24 0.114 45 AL 0.003 48 0.895 19
is worth noting that although the economies of the listed ‘‘Great Plains’’
states depend on farming, only a small proportion of their farmland is
dedicated to organic agriculture. Table 5 shows that with the exception
of ND, which ranks 11th in the country with 0.33% of its farmland
dedicated to organic agriculture, the rankings of the remaining states
range between 20th and 0.21% of farmland (MT) and 39th and 0.02%
of farmland (OK).

A notable observation about the smaller high-emissions group is
that organic agriculture is virtually absent. For instance, Table 5 shows
that MS ranks 9th for farming (1.41% of GDP) but 46th for organic
agriculture (0.004% of farmland). The remaining three states, namely
AL, SC, and LA rank 19th, 33rd, and 36th in farming and 48th, 47th,
and 45th in organic agriculture, respectively.

Fig. 2 also displays a group of low-emissions states, with California
(CA) being the largest contributor to this category where agriculture
contributes 0.87% to GDP and organic farming represents 0.91% of
total farmland. There is also a cluster of 11 low-emissions states in
the northeastern region, extending to Michigan (MI) in the north and
Maryland (MD) in the south. Farming activities contribute significantly
less to the GDP of these states when compared to the high-emissions
cluster. The highest contribution to GDP comes from Vermont (VT) at
0.95% of its GDP and the lowest is in Massachusetts (MA) at 0.063%.
However, organic agriculture is substantially larger in most states, with
rates ranging between 3.13% in VT and 0.14% in CT.

6. Discussion and conclusions

This paper makes use of U.S. state-level data over the 1997–2010
period to estimate and map emissions arising from agricultural activi-
ties while accounting for the role that organic agriculture can play in
mitigating GHG emissions. The analysis presented in this paper is both
broad and deep in its approach. On one hand, it covers a large scope by
using panel state-level data to estimate and map emissions arising from
agricultural activities across the United States. This allows for a com-
prehensive view of the spatial distribution of agricultural greenhouse
gas emissions across the country. On the other hand, the analysis goes
in-depth by accounting for the role that organic agriculture plays in
mitigating GHG emissions.

The study finds that a one percent increase in total farmland results
in a 0.13 percent increase in GHG emissions, while a one percent in-
crease in organic cropland and pasture leads to a decrease in emissions
by about 0.06 percent and 0.007 percent, respectively. These results
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align with those reported in Squalli and Adamkiewicz (2018) and are
used to derive estimates for agricultural emissions for individual states,
accounting for the effect of organic farming and pasture. The spatial
distribution of these estimates yields the following insights:

1. The spatial distribution of agricultural GHG emissions in
the United States is uneven: High-emissions states are concen-
trated in the Great Plains extending south to NM and the south-
eastern area of the United States. Meanwhile, low-emissions
states are in California and the northeastern region extending
to MI in the north and MD in the south.

2. Agriculture is a significant contributor to GDP within the
high-emissions states but organic agriculture represents
only a small proportion of total farmland: The contribution of
agriculture to GDP in high-emissions Great Plains states ranges
from 1.11% to 5.94%, while organic agriculture as a share of
total farmland ranges from 0.02% to 0.33%. In the southeast-
ern states, the contribution of agriculture to GDP ranges from
0.39% to 1.41%, and organic agriculture ranges from 0.003% to
0.005%.

3. Agriculture has a substantially lower contribution to GDP
within low-emissions states but organic agriculture repre-
sents a large proportion of total farmland: The contribution of
agriculture to GDP ranges from 0.063% to 0.95%, while organic
farming as a share of total farmland ranges from 0.14% to
3.13%.

The insights derived from the spatial analysis indicate that reducing
GHG emissions effectively may necessitate creating and implementing
policies and initiatives tailored to specific regions rather than relying
on general recommendations. This means that policies crafted to ad-
dress the unique characteristics of the agricultural sectors in the Great
Plains and southeastern regions could be more successful in promoting
sustainable agricultural practices and reducing GHG emissions. Thus,
low-emissions states should be explored as potential examples of sus-
tainable agricultural practices that could be adopted in other parts of
the country.

The findings of this study have significant policy implications. The
estimated ecological elasticities related to organic farming and pasture
along with the spatial distribution of GHG emissions across the United
States offer empirical evidence of the potential for organic farming to
mitigate GHG emissions. Policymakers can use these results to develop
appropriate policies to encourage the transition from conventional to
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organic farming practices and to scale up organic farming. The scal-
ing up of organic agriculture, especially in farming-dependent states,
has the potential to significantly contribute to the mitigation of GHG
emissions, thereby helping the United States and the world meet their
emission reduction targets.

Beyond mitigating GHG emissions, scaling up organic agriculture
would have many potential benefits. For instance, it could help the
growth of rural communities, which represent major sources of organic
products. Supporting the growth of organic farms in such communi-
ties can provide well-needed economic opportunities and increase the
availability of healthier and nutritious food options especially in areas
with limited access. Upscaling organic farming can also be particularly
beneficial in developing countries where farmers typically depend on
external inputs, such as synthetic fertilizers and pesticides. Organic
farming reduces dependency on such inputs and can contribute to a
better diversification of the farmers’ income streams and increased
resilience to market fluctuations.

Of course, scaling up organic agriculture is not an easy task. Organic
farming often requires more labor and more expensive inputs than
conventional farming. While this can make organic farming financially
unattractive in the short term, improved soil health, reduced pollution,
and the scaling of organic farming could help offset or reduce these
costs over time. Another challenge is the need to educate farmers,
consumers, and policymakers about the benefits of organic agriculture.
Many farmers and consumers, especially in developing countries, may
not be familiar with organic farming techniques and their environmen-
tal, health, and economic benefits, and may need education, training,
and support to make the transition. Finally, policymakers should in-
corporate scientific advances in their work in order to ensure that
their policies are based on concrete evidence and are not influenced
by personal beliefs and political biases.

The paper faces some limitations, which should be addressed in
future research. First, although the data we use in this study account
for carbon sequestration from changes in land use and forestry man-
agement, they do not capture sequestered soil carbon from organic
agricultural. As a result, the estimates produced by this study may
understate the true environmental benefits of organic farming. Indeed,
GHG estimates are based on inventories and actual sources and sinks
may vary since we do not have a complete understanding of these pro-
cesses. Second and as highlighted by Squalli and Adamkiewicz (2018),
WRI’s use of SIT default data, which ignores potentially more accurate
activity data provided by individual states, raises accuracy concerns.
Third, the study does not account for the effect of livestock on GHG
emissions, which could be significant especially in the Great Plains. For
instance, cows feeding on pasture produce more methane than those
feeding on grain. These differences are clearly not directly captured by
our data. Fourth, our data do not control for the ecologically-sound
processes that are typically used to manage the land and that are
known to play a significant role in reducing the carbon footprint of
agriculture. Finally, while GHG emissions are an important factor to
consider, there are other environmental elements that can be affected
by farming activities, such as water quality, soil health, biodiversity,
and ecosystem function. Thus, this analysis only provides a partial
understanding of the environmental impact of agricultural practices.
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